
e04 – Minimizing or Maximizing a Function e04hdc

nag opt check 2nd deriv (e04hdc)

1. Purpose

nag opt check 2nd deriv (e04hdc) checks that a user-supplied routine for calculating second
derivatives of an objective function is consistent with a user-supplied routine for calculating the
corresponding first derivatives.

2. Specification

#include <nag.h>
#include <nage04.h>

void nag_opt_check_2nd_deriv(Integer n,
void (*objfun)(Integer n, double x[], double *objf,

double g[], Nag_Comm *comm),
void (*hessfun)(Integer n, double x[], double h[],

double hd[], Nag_Comm *comm),
double x[], double g[], double hesl[],
double hesd[], Nag_Comm *comm, NagError *fail)

3. Description

Routines for minimizing a function F (x1, x2, . . . , xn) of the variables x1, x2, . . . , xn may require
the user to provide a subroutine to evaluate the second derivatives of F . nag opt check 2nd deriv
is designed to check the second derivatives calculated by such user-supplied routines. As well
as the routine to be checked (hessfun), the user must supply a routine (objfun) to evaluate the
first derivatives, and a point x = (x1, x2, . . . , xn)T at which the checks will be made. Note
that nag opt check 2nd deriv checks routines of the form required for nag opt bounds 2nd deriv
(e04lbc).

nag opt check 2nd deriv first calls objfun and hessfun to evaluate the first and second derivatives
of F at x. The user-supplied Hessian matrix (H , say) is projected onto two orthogonal vectors y
and z to give the scalars yT Hy and zT Hz respectively. The same projections of the Hessian matrix
are also estimated by finite differences, giving

p = (yT g(x + hy) − yT g(x))/h

and q = (zT g(x + hz) − zT g(x))/h

respectively, where g() denotes the vector of first derivatives at the point in brackets and h is a
small positive scalar. If the relative difference between p and yT Hy or between q and zT Hz is
judged too large, an error indicator is set.

4. Parameters

n
Input: the number n of independent variables in the objective function.
Constraint: n ≥ 1.

objfun
objfun must evaluate the function F (x) and its first derivatives ∂F/∂xj at a specified point.
(However, if the user does not wish to calculate F or its first derivatives at a particular point,
there is the option of setting a parameter to cause nag opt check 2nd deriv to terminate
immediately.)

The specification for objfun is:

[NP3275/5/pdf] 3.e04hdc.1

nag opt check 2nd deriv NAG C Library Manual

void objfun(Integer n, double x[], double *objf, double g[], Nag_Comm *comm)

n
Input: the number n of variables.

x[n]
Input: the point x at which the value of F , or F and the ∂F/∂xj, are required.

objf
Output: objfun must set objf to the value of the objective function F at the
current point x. If it is not possible to evaluate F then objfun should assign a
negative value to comm->flag; nag opt check 2nd deriv will then terminate.

g[n]
Output: unless comm->flag is reset to a negative number, objfun must set
g[j − 1] to the value of the first derivative ∂F/∂xj at the current point x for
j = 1, 2, . . . , n.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Output: if objfun resets comm->flag to some negative number then
nag opt check 2nd deriv will terminate immediately with the error
indicator NE USER STOP. If fail is supplied to nag opt check 2nd deriv
fail.errnum will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to objfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to objfun (including the current one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt check 2nd deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by objfun
when called from nag opt check 2nd deriv.

Note: nag opt check deriv (e04hcc) should be used to check the first derivatives calculated
by objfun before nag opt check 2nd deriv (e04hdc) is used to check the second derivatives,
since nag opt check 2nd deriv (e04hdc) assumes that the first derivatives are correct.

hessfun
hessfun must calculate the second derivatives of F (x) at any point x. (As with objfun there
is the option of causing nag opt check 2nd deriv to terminate immediately.)

The specification for hessfun is:

3.e04hdc.2 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04hdc

void hessfun(Integer n, double x[], double h[], double hd[], Nag_Comm *comm)

n
Input: the number n of variables in the objective function.

x[n]
Input: the point x at which the second derivatives are required. ∂F/∂xj, are
required.

h[]
This array is allocated internally by nag opt check 2nd deriv.
Output: unless comm->flag is reset to a negative number hessfun must place the
strict lower triangle of the second derivative matrix of F (evaluated at the point
x) in h, stored by rows, i.e., set

h[(i − 1)(i − 2)/2 + j − 1] =
∂2F

∂xi∂xj

∣
∣
∣
∣
x=x

, for i = 2, 3, . . . , n; j = 1, 2, . . . , i − 1.

(The upper triangle is not required because the matrix is symmetric.)

hd[n]
Input: the value of ∂F/∂xj at the point x, for j = 1, 2, . . . , n.
These values may be useful in the evaluation of the second derivatives.
Output: unless comm->flag is reset to a negative number hessfun must place the
diagonal elements of the second derivative matrix of F (evaluated at the point
x) in hd, i.e., set

hd[j − 1] =
∂2F

∂xj
2

∣
∣
∣
∣
x=x

, for j = 1, 2, . . . , n.

comm
Pointer to structure of type Nag Comm; the following members are relevant to
objfun.

flag – Integer
Output: if hessfun resets comm->flag to some negative number then
nag opt check 2nd deriv will terminate immediately with the error
indicator NE USER STOP. If fail is supplied to nag opt check 2nd deriv
fail.errnum will be set to the user’s setting of comm->flag.

first – Boolean
Input: will be set to TRUE on the first call to hessfun and FALSE for all
subsequent calls.

nf – Integer
Input: the number of evaluations of the objective function; this value will
be equal to the number of calls made to hessfun (including the current
one).

user – double *
iuser – Integer *
p – Pointer

The type Pointer will be void * with a C compiler that defines void *
and char * otherwise.
Before calling nag opt check 2nd deriv these pointers may be allocated
memory by the user and initialized with various quantities for use by
hessfun when called from nag opt check 2nd deriv.

Note: The array x must not be changed by hessfun.

x[n]
Input: x[j−1], for j = 1, 2, . . . , n must contain the co-ordinates of a suitable point at which to
check the derivatives calculated by objfun. ‘Obvious’ settings, such as 0.0 or 1.0, should not

[NP3275/5/pdf] 3.e04hdc.3

nag opt check 2nd deriv NAG C Library Manual

be used since, at such particular points, incorrect terms may take correct values (particularly
zero), so that errors could go undetected. Similarly, it is advisable that no two elements of x
should be the same.

g[n]
Output: unless comm->flag is reset to a negative number g[j − 1] contains the value of the
the first derivative ∂F/∂xj at the point given in x, as calculated by objfun for j = 1, 2, . . . , n.

hesl[n∗(n-1)/2]
Output: unless comm->flag is reset to a negative number hesl contains the strict lower triangle
of the second derivative matrix of F , as evaluated by hessfun at the point given in x, stored
by rows.

hesd[n]
Output: unless comm->flag is reset to a negative number hesd contains the diagonal elements
of the second derivative matrix of F , as evaluated by hessfun at the point given in x.

comm
Input/Output: structure containing pointers for communication to user-supplied functions;
see the above description of objfun for details. If the user does not need to make use
of this communication feature the null pointer NAGCOMM NULL may be used in the call to
nag opt check 2nd deriv; comm will then be declared internally for use in calls to user-
supplied functions.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
Users are recommended to declare and initialize fail and set fail.print = TRUE for this
function.

5. Error Indications and Warnings

NE INT ARG LT
On entry, n must not be less than 1: n = 〈value〉.

NE DERIV ERRORS
Large errors were found in the derivatives of the objective function.

NE USER STOP
User requested termination, user flag value = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

6. Further Comments

nag opt check 2nd deriv calls hessfun once and objfun three times.

6.1. Accuracy

The error NE DERIV ERRORS is returned if

|yT Hy − p| ≥
√

h × (|yT Hy| + 1.0)

or |zT Hz − q| ≥
√

h × (|zT Hz| + 1.0)

where h is set equal to
√

ε (ε being the machine precision as given by nag machine precision
(X02AJC)) and other quantities are as defined in Section 3.

6.2. References

None.

7. See Also

nag opt bounds 2nd deriv (e04lbc) and nag opt check deriv (e04hcc).

3.e04hdc.4 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04hdc

8. Example

Suppose that it is intended to use nag opt bounds 2nd deriv (e04lbc) to minimize

F = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4.

The following program could be used to check the second derivatives calculated by the required
hessfun function. (The call of nag opt check 2nd deriv is preceded by a call of nag opt check deriv
(e04hcc) to check the routine objfun which calculates the first derivatives.)

8.1. Program Text

/* nag_opt_check_2nd_deriv(e04hdc) Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <math.h>
#include <nage04.h>

#ifdef NAG_PROTO
static void hess(Integer n, double xc[], double fhesl[],

double fhesd[], Nag_Comm *comm);
#else
static void hess();
#endif

#ifdef NAG_PROTO
static void funct(Integer n, double xc[], double *fc,

double gc[], Nag_Comm *comm);
#else
static void funct();
#endif

main()
{
double hesd[4];
double hesl[6], f;
double g[4];
double x[4];

Integer n;
Integer i, j, k;

Nag_Comm comm;

#define X(I) x[(I)-1]
#define HESL(I) hesl[(I)-1]
#define HESD(I) hesd[(I)-1]
#define G(I) g[(I)-1]

Vprintf("e04hdc Example Program Results\n\n");

/* Set up an arbitrary point at which to check the derivatives */
n = 4;
X(1) = 1.46;
X(2) = -.82;
X(3) = .57;
X(4) = 1.21;

Vprintf("The test point is\n");
for (j = 1; j <= n; ++j)

Vprintf("%9.4f", X(j));
Vprintf("\n");

[NP3275/5/pdf] 3.e04hdc.5

nag opt check 2nd deriv NAG C Library Manual

/* Check the 1st derivatives */
e04hcc(n, funct, &X(1), &f, &G(1), &comm, NAGERR_DEFAULT);

/* Check the 2nd derivatives */
e04hdc(n, funct, hess, &X(1), &G(1), &HESL(1), &HESD(1),

&comm, NAGERR_DEFAULT);

Vprintf("\n2nd derivatives are consistent with 1st derivatives.\n\n");
Vprintf("%s%12.4e\n",

"At the test point, funct gives the function value, ", f);
Vprintf("and the 1st derivatives\n");
for (j = 1; j <= n; ++j)

Vprintf("%12.3e%s", G(j), j%4?"":"\n");

Vprintf("\nhess gives the lower triangle of the Hessian matrix\n");
Vprintf("%12.3e\n", HESD(1));
k = 1;
for (i = 2; i <= n; ++i)

{
for (j = k; j <= k + i - 2; ++j)
Vprintf("%12.3e", HESL(j));

Vprintf("%12.3e\n", HESD(i));
k = k + i - 1;

}
exit(EXIT_SUCCESS);

}

#ifdef NAG_PROTO
static void funct(Integer n, double xc[], double *fc,

double gc[], Nag_Comm *comm)
#else

static void funct(n, xc, fc, gc, comm)
Integer n;
double xc[], *fc, gc[];
Nag_Comm *comm;

#endif
{

/* Routine to evaluate objective function and its 1st derivatives. */

#define GC(I) gc[(I)-1]
#define XC(I) xc[(I)-1]

*fc = pow(XC(1)+10.0*XC(2), 2.0)
+ 5.0*pow(XC(3)-XC(4), 2.0)
+ pow(XC(2)-2.0*XC(3), 4.0)
+ 10.0*pow(XC(1)-XC(4), 4.0);

GC(1) = 2.0*(XC(1)+10.0*XC(2)) +
40.0*pow(XC(1)-XC(4),3.0);

GC(2) = 20.0*(XC(1)+10.0*XC(2)) +
4.0*pow(XC(2)-2.0*XC(3),3.0);

GC(3) = 10.0*(XC(3)-XC(4)) -
8.0*pow(XC(2)-2.0*XC(3),3.0);

GC(4) = 10.0*(XC(4)-XC(3)) -
40.0*pow(XC(1)-XC(4), 3.0);

}

#ifdef NAG_PROTO
static void hess(Integer n, double xc[], double fhesl[],

double fhesd[], Nag_Comm *comm)
#else

static void hess(n, xc, fhesl, fhesd, comm)
Integer n;
double xc[], fhesl[];
double fhesd[];
Nag_Comm *comm;

#endif
{

3.e04hdc.6 [NP3275/5/pdf]

e04 – Minimizing or Maximizing a Function e04hdc

/* Routine to evaluate 2nd derivatives */

#define FHESD(I) fhesd[(I)-1]
#define FHESL(I) fhesl[(I)-1]
#define XC(I) xc[(I)-1]

FHESD(1) = 2.0 + 120.0*pow(XC(1)-XC(4), 2.0);
FHESD(2) = 200.0 + 12.0*pow(XC(2)-2.0*XC(3), 2.0);
FHESD(3) = 10.0 + 48.0*pow(XC(2)-2.0*XC(3), 2.0);
FHESD(4) = 10.0 + 120.0*pow(XC(1)-XC(4), 2.0);
FHESL(1) = 20.0;
FHESL(2) = 0.0;
FHESL(3) = -24.0*pow(XC(2)-2.0*XC(3), 2.0);
FHESL(4) = -120.0*pow(XC(1)-XC(4), 2.0);
FHESL(5) = 0.0;
FHESL(6) = -10.0;

}

8.2. Program Data

None.

8.3. Program Results

e04hdc Example Program Results

The test point is
1.4600 -0.8200 0.5700 1.2100

2nd derivatives are consistent with 1st derivatives.

At the test point, funct gives the function value, 6.2273e+01
and the 1st derivatives
-1.285e+01 -1.649e+02 5.384e+01 5.775e+00

hess gives the lower triangle of the Hessian matrix
9.500e+00
2.000e+01 2.461e+02
0.000e+00 -9.220e+01 1.944e+02

-7.500e+00 0.000e+00 -1.000e+01 1.750e+01

[NP3275/5/pdf] 3.e04hdc.7

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

